Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318009121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588414

RESUMO

Secondary-active transporters catalyze the movement of myriad substances across all cellular membranes, typically against opposing concentration gradients, and without consuming any ATP. To do so, these proteins employ an intriguing structural mechanism evolved to be activated only upon recognition or release of the transported species. We examine this self-regulated mechanism using a homolog of the cardiac Na+/Ca2+ exchanger as a model system. Using advanced computer simulations, we map out the complete functional cycle of this transporter, including unknown conformations that we validate against existing experimental data. Calculated free-energy landscapes reveal why this transporter functions as an antiporter rather than a symporter, why it specifically exchanges Na+ and Ca2+, and why the stoichiometry of this exchange is exactly 3:1. We also rationalize why the protein does not exchange H+ for either Ca2+ or Na+, despite being able to bind H+ and its high similarity with H+/Ca2+ exchangers. Interestingly, the nature of this transporter is not explained by its primary structural states, known as inward- and outward-open conformations; instead, the defining factor is the feasibility of conformational intermediates between those states, wherein access pathways leading to the substrate binding sites become simultaneously occluded from both sides of the membrane. This analysis offers a physically coherent, broadly transferable route to understand the emergence of function from structure among secondary-active membrane transporters.


Assuntos
Antiporters , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/metabolismo , Antiporters/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Conformação Proteica
2.
Sci Adv ; 9(49): eadj5539, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064553

RESUMO

Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Microscopia Crioeletrônica , Dilatação , Ativação do Canal Iônico/fisiologia
3.
Proc Natl Acad Sci U S A ; 120(47): e2308454120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956279

RESUMO

Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na+ binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na+ binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na+. Quantifying the thermodynamic stability while titrating Na+ indicates that dimerization occurs first, providing a membrane-embedded binding site where Na+ binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na+ binding, result in channel activation.


Assuntos
Fluoretos , Bicamadas Lipídicas , Dimerização , Bicamadas Lipídicas/química , Canais Iônicos/metabolismo , Sítios de Ligação
4.
PNAS Nexus ; 2(8): pgad269, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37637198

RESUMO

All lipid membranes have inherent morphological preferences and resist deformation. Yet adaptations in membrane shape can and do occur at multiple length scales. While this plasticity is crucial for cellular physiology, the factors controlling the morphological energetics of lipid bilayers and the dominant mechanisms of membrane remodeling remain to be fully understood. An ongoing debate regarding the universality of the stiffening effect of cholesterol underscores the challenges facing this field, both experimentally and theoretically, even for simple lipid mixtures. On the computational side, we have argued that enhanced-sampling all-atom molecular dynamics simulations are uniquely suited for the quantification of membrane conformational energetics, as they minimize a priori assumptions and permit analysis of bilayers in deformed states. To showcase this approach, we examine reported inconsistencies between alternative experimental measurements of bending moduli for cholesterol-enriched membranes. Specifically, we analyze lipid bilayers with different chain saturation and compute free-energy landscapes for curvature deformations distributed over areas from ∼5 to ∼60 nm2. These enhanced simulations, totaling over 100 µs of sampling time, enable us to directly quantify both bending and tilt moduli and to dissect the contributing factors and molecular mechanisms of curvature generation at each length scale. Our results show that the effects of cholesterol on bending rigidity are lipid-specific and suggest that this specificity arises from differences in the torsional dynamics of the acyl chains. In summary, we demonstrate that quantitative relationships can now be established between lipid structure and bending energetics, paving the way for addressing open fundamental questions in cell membrane mechanics.

5.
Commun Biol ; 6(1): 573, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248347

RESUMO

Ca2+ is an important signaling messenger. In microorganisms, fungi, and plants, H+/Ca2+ antiporters (CAX) are known to play key roles in the homeostasis of intracellular Ca2+ by catalyzing its efflux across the cell membrane. Here, we reveal that the bacterial CAX homolog YfkE transports Ca2+ in two distinct modes: a low-flux H+/Ca2+ exchange mode and a high-flux mode in which Ca2+ and phosphate ions are co-transported (1:1) in exchange for H+. Coupling with phosphate greatly accelerates the Ca2+ efflux activity of YfkE. Our studies reveal that Ca2+ and phosphate bind to adjacent sites in a central translocation pathway and lead to mechanistic insights that explain how this CAX alters its conserved alpha-repeat motifs to adopt phosphate as a specific "transport chaperon" for Ca2+ translocation. This finding uncovers a co-transport mechanism within the CAX family that indicates this class of proteins contributes to the cellular homeostasis of both Ca2+ and phosphate.


Assuntos
Antiporters , Fosfatos , Antiporters/metabolismo , Fosfatos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ânions/metabolismo
6.
bioRxiv ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36778237

RESUMO

All lipid membranes have inherent morphological preferences and resist deformation. Yet adaptations in membrane shape can and do occur at multiple length scales. While this plasticity is crucial for cellular physiology, the factors controlling the morphological energetics of lipid bilayers and the dominant mechanisms of membrane remodeling remain unclear. An ongoing debate regarding the universality of the stiffening effect of cholesterol underscores the challenges facing this field, both experimentally and theoretically, even for simple lipid mixtures. On the computational side, we have argued that enhanced- sampling all-atom molecular dynamics simulations are uniquely suited for quantification of membrane conformational energetics, not only because they minimize a-priori assumptions, but also because they permit analysis of bilayers in deformed states. To showcase this approach, we examine reported inconsistencies between alternative experimental measurements of bending moduli for cholesterol-enriched membranes. Specifically, we analyze lipid bilayers with different chain saturation, and compute free-energy landscapes for curvature deformations distributed over areas from ∼5 to ∼60 nm 2 . These enhanced simulations, totaling over 100 microseconds of sampling time, enable us to directly quantify both bending and tilt moduli, and to dissect the contributing factors and molecular mechanisms of curvature generation at each length scale. Our results show that cholesterol effects are lipid-specific, in agreement with giantvesicle measurements, and explain why experiments probing nanometer scale lipid dynamics diverge. In summary, we demonstrate that quantitative structure-mechanics relationships can now be established for heterogenous membranes, paving the way for addressing open fundamental questions in cell membrane mechanics. Significance: Elucidating the energetics and mechanisms of membrane remodeling is an essential step towards understanding cell physiology. This problem is challenging, however, because membrane bending involves both large-scale and atomic-level dynamics, which are difficult to measure simultaneously. A recent controversy regarding the stiffening effect of cholesterol, which is ubiquitous in animal cells, illustrates this challenge. We show how enhanced molecular-dynamics simulations can bridge this length-scale gap and reconcile seemingly incongruent observations. This approach facilitates a conceptual connection between lipid chemistry and membrane mechanics, thereby providing a solid basis for future research on remodeling phenomena, such as in membrane trafficking or viral infection.

7.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36789408

RESUMO

Secondary-active transporters catalyze the movement of myriad substances across all cellular membranes, typically against opposing concentration gradients, and without consuming any ATP. To do so, these proteins employ an intriguing structural mechanism evolved to be activated only upon recognition or release of the transported species. We examine this self-regulated mechanism using a homolog of the cardiac Na+/Ca2+ exchanger as a model system. Using advanced computer simulations, we map out the complete functional cycle of this transporter, including unknown conformations that we validate against existing experimental data. Calculated free-energy landscapes reveal why this transporter functions as an antiporter rather than a symporter, why it specifically exchanges Na+ and Ca2+, and why the stoichiometry of this exchange is exactly 3:1. We also rationalize why the protein does not exchange H+ for either Ca2+ or Na+, despite being able to bind H+ and its high similarity with H+/Ca2+ exchangers. Interestingly, the nature of this transporter is not explained by its primary structural states, known as inward- and outward-open conformations; instead, the defining factor is the feasibility of conformational intermediates between those states, wherein access pathways leading to the substrate binding sites become simultaneously occluded from both sides of the membrane. This analysis offers a physically-coherent, broadly transferable route to understand the emergence of function from structure among secondary-active membrane transporters.

8.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36789410

RESUMO

Many ion channels are multi-subunit complexes with a polar permeation pathway at the oligomeric interface, but their mechanisms of assembly into functional, thermodynamically stable units within the membrane are largely unknown. Here we characterize the assembly of the inverted-topology, homodimeric fluoride channel Fluc, leveraging a known mutation, N43S, that weakens Na + binding to the dimer interface, thereby unlocking the complex. While single-channel recordings show Na + is required for activation, single-molecule photobleaching and bulk Förster Resonance Energy Transfer experiments in lipid bilayers demonstrate that N43S Fluc monomers and dimers exist in dynamic equilibrium, even without Na + . Molecular dynamics simulations indicate this equilibrium is dominated by a differential in the lipid-solvation energetics of monomer and dimer, which stems from hydrophobic exposure of the polar ion pathway in the monomer. These results suggest a model wherein membrane-associated forces induce channel assembly while subsequent factors, in this case Na + binding, result in channel activation. Teaser: Membrane morphology energetics foster inverted-topology Fluc channels to form dimers, which then become active upon Na + binding.

9.
Elife ; 122023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715097

RESUMO

The force-from-lipids hypothesis of cellular mechanosensation posits that membrane channels open and close in response to changes in the physical state of the lipid bilayer, induced for example by lateral tension. Here, we investigate the molecular basis for this transduction mechanism by studying the mechanosensitive ion channel MscS from Escherichia coli and its eukaryotic homolog MSL1 from Arabidopsis thaliana. First, we use single-particle cryo-electron microscopy to determine the structure of a novel open conformation of wild-type MscS, stabilized in a thinned lipid nanodisc. Compared with the closed state, the structure shows a reconfiguration of helices TM1, TM2, and TM3a, and widening of the central pore. Based on these structures, we examined how the morphology of the membrane is altered upon gating, using molecular dynamics simulations. The simulations reveal that closed-state MscS causes drastic protrusions in the inner leaflet of the lipid bilayer, both in the absence and presence of lateral tension, and for different lipid compositions. These deformations arise to provide adequate solvation to hydrophobic crevices under the TM1-TM2 hairpin, and clearly reflect a high-energy conformation for the membrane, particularly under tension. Strikingly, these protrusions are largely eradicated upon channel opening. An analogous computational study of open and closed MSL1 recapitulates these findings. The gating equilibrium of MscS channels thus appears to be dictated by opposing conformational preferences, namely those of the lipid membrane and of the protein structure. We propose a membrane deformation model of mechanosensation, which posits that tension shifts the gating equilibrium towards the conductive state not because it alters the mode in which channel and lipids interact, but because it increases the energetic cost of the morphological perturbations in the membrane required by the closed state.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bicamadas Lipídicas , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular , Simulação de Dinâmica Molecular
10.
Biophys J ; 122(11): 2023-2040, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36333911

RESUMO

Molecular dynamics (MD) simulations have become the predominant computational analysis method in membrane biophysics, as this technique is uniquely suited for investigations of complex molecular systems through the relevant physical principles. Owing to continued improvements in scope and performance, the trajectories generated through this approach contain ever-increasing amounts of information, which must be synthesized and simplified in post-analysis using tools that are not only mechanistically insightful but also computationally efficient and highly scalable. Here, we introduce MOSAICS, a self-contained high-performance suite of C++ software tools designed for advanced analyses of lipid bilayer structure and dynamics from MD trajectories. MOSAICS is to our knowledge the most comprehensive software suite of this kind, enabling analysis of a wide array of morphological and kinetic properties, for both simple and complex membranes, irrespective of system size or resolution. Importantly, MOSAICS is designed to provide spatial distributions of all computed quantities, with built-in masking tools, noise filtering, and statistical significance metrics to facilitate quantitative interpretations of the trajectory data; it is also fully parallelized and can therefore leverage the capabilities of supercomputing facilities. Despite its technical sophistication, MOSAICS is user-friendly and requires minimal computational expertise, making it accessible to researchers of all skill levels. This sofware suite can be freely downloaded at https://github.com/MOSAICS-NIH/.


Assuntos
Simulação de Dinâmica Molecular , Software
11.
Proc Natl Acad Sci U S A ; 119(44): e2208882119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279431

RESUMO

Transmembrane protein 175 (TMEM175) is an evolutionarily distinct lysosomal cation channel whose mutation is associated with the development of Parkinson's disease. Here, we present a cryoelectron microscopy structure and molecular simulations of TMEM175 bound to 4-aminopyridine (4-AP), the only known small-molecule inhibitor of TMEM175 and a broad K+ channel inhibitor, as well as a drug approved by the Food and Drug Administration against multiple sclerosis. The structure shows that 4-AP, whose mode of action had not been previously visualized, binds near the center of the ion conduction pathway, in the open state of the channel. Molecular dynamics simulations reveal that this binding site is near the middle of the transmembrane potential gradient, providing a rationale for the voltage-dependent dissociation of 4-AP from TMEM175. Interestingly, bound 4-AP rapidly switches between three predominant binding poses, stabilized by alternate interaction patterns dictated by the twofold symmetry of the channel. Despite this highly dynamic binding mode, bound 4-AP prevents not only ion permeation but also water flow. Together, these studies provide a framework for the rational design of novel small-molecule inhibitors of TMEM175 that might reveal the role of this channel in human lysosomal physiology both in health and disease.


Assuntos
4-Aminopiridina , Canais de Potássio , Humanos , 4-Aminopiridina/farmacologia , Canais de Potássio/metabolismo , Microscopia Crioeletrônica , Lisossomos/metabolismo , Água/metabolismo
12.
Elife ; 112022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608336

RESUMO

Structures of the human lysosomal K+ channel transmembrane protein 175 (TMEM175) in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is permeable to K+ and, to a lesser degree, also Na+. Both cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.


Assuntos
Desidratação , Canais de Potássio , Humanos , Íons/metabolismo , Lisossomos/metabolismo , Simulação de Dinâmica Molecular , Potássio/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo
13.
Sci Adv ; 8(11): eabm7814, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302848

RESUMO

Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.

14.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140179

RESUMO

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Assuntos
Acil Coenzima A/química , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Domínio Catalítico , Membrana Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Humanos , Lipoilação , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos
15.
Nat Chem Biol ; 18(2): 226-235, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931066

RESUMO

Substrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis. In our cryo-EM structure, ATP-bound BmrCD adopts an inward-facing architecture featuring two molecules of the substrate Hoechst-33342 in a striking asymmetric head-to-tail arrangement. Deletion of the extracellular domain capping the substrate-binding chamber or mutation of Hoechst-coordinating residues abrogates cooperative stimulation of ATP hydrolysis. Together, our findings support a mechanistic role for symmetry mismatch between the nucleotide binding and the transmembrane domains in the conformational cycle of ABC transporters and is of notable importance for rational design of molecules for targeted ABC transporter inhibition.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/metabolismo , Benzimidazóis , Sítios de Ligação , Clostridium/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
16.
Neurochem Res ; 47(1): 163-175, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33565025

RESUMO

Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs GltPh and GltTk, revealed that this methionine is involved in the coordination of one of the three Na+ ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of GltPh showing that mutations of this methionine diminish the binding cooperativity between substrates and Na+. It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of GltTk using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism.


Assuntos
Metionina , Sódio , Transporte Biológico , Íons/metabolismo , Metionina/metabolismo , Proteínas de Transporte de Neurotransmissores/metabolismo
18.
J Chem Theory Comput ; 17(11): 6775-6788, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34669402

RESUMO

A methodology is proposed for the calculation of multidimensional free-energy landscapes of molecular systems, based on analysis of multiple molecular dynamics trajectories wherein adaptive biases have been applied to enhance the sampling of different collective variables. In this approach, which we refer to as the Force-Correction Analysis Method (FCAM), local averages of the total and biasing forces are evaluated post hoc, and the latter are subtracted from the former to obtain unbiased estimates of the mean force across collective-variable space. Multidimensional free-energy surfaces and minimum free-energy pathways are then derived by integrating the mean-force landscape with a kinetic Monte Carlo algorithm. To evaluate the proposed method, a series of numerical tests and comparisons with existing approaches were carried out for small molecules, peptides, and proteins, based on all-atom trajectories generated with standard, concurrent, and replica-exchange metadynamics in collective-variable spaces ranging from one to six dimensional. The tests confirm the correctness of the FCAM formulation and demonstrate that calculated mean forces and free energies converge rapidly and accurately, outperforming other methods used to unbias this kind of simulation data.

19.
J Chem Theory Comput ; 17(10): 6240-6261, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516741

RESUMO

The nonpolarizable CHARMM force field is one of the most widely used energy functions for all-atom biomolecular simulations. Chloride is the only halide ion included in the latest version, CHARMM36m, and is used widely in simulation studies, often as an electrolyte ion but also as the biological substrate of transport proteins and enzymes. Here, we find that existing parameters systematically underestimate the interaction of Cl- with proteins and lipids. Accordingly, when examined in solution, little to no Cl-association can be observed with most components of the protein, including backbone, polar side chains and aromatic rings. The strength of the interaction with cationic side chains and with alkali ions is also incongruent with experimental measurements, specifically osmotic coefficients of concentrated solutions. Consistent with these findings, a 4-µs trajectory of the Cl--specific transport protein CLC-ec1 shows irreversible Cl- dissociation from the so-called Scen binding site, even in a 150 mM NaCl buffer. To correct for these deficiencies, we formulate a series of pair-specific Lennard-Jones parameters that override those resulting from the conventional Lorentz-Berthelot combination rules. These parameters, referred to as NBFIX, are systematically calibrated against available experimental data as well as ab initio geometry optimizations and energy evaluations, for a wide set of binary and ternary Cl- complexes with protein and lipid analogs and alkali cations. Analogously, we also formulate parameter sets for the other three biological halide ions, namely, fluoride, bromide, and iodide. The resulting parameters are used to calculate the potential of mean force defining the interaction of each anion and each of the protein and lipid analogues in bulk water, revealing association free energies in the range of -0.3 to -3.3 kcal/mol, with the F- complexes being the least stable. The NBFIX corrections also preserve the Cl- occupancy of CLC-ec1 in a second 4-µs trajectory. We posit that these optimized molecular-mechanics models provide a more realistic foundation for all-atom simulation studies of processes entailing changes in hydration, recognition, or transport of halide anions.


Assuntos
Álcalis , Cloretos , Lipídeos/química , Proteínas/química , Ânions/química , Cátions/química , Fluoretos/química , Simulação de Dinâmica Molecular , Termodinâmica
20.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825681

RESUMO

Over two-thirds of integral membrane proteins of known structure assemble into oligomers. Yet, the forces that drive the association of these proteins remain to be delineated, as the lipid bilayer is a solvent environment that is both structurally and chemically complex. In this study, we reveal how the lipid solvent defines the dimerization equilibrium of the CLC-ec1 Cl-/H+ antiporter. Integrating experimental and computational approaches, we show that monomers associate to avoid a thinned-membrane defect formed by hydrophobic mismatch at their exposed dimerization interfaces. In this defect, lipids are strongly tilted and less densely packed than in the bulk, with a larger degree of entanglement between opposing leaflets and greater water penetration into the bilayer interior. Dimerization restores the membrane to a near-native state and therefore, appears to be driven by the larger free-energy cost of lipid solvation of the dissociated protomers. Supporting this theory, we demonstrate that addition of short-chain lipids strongly shifts the dimerization equilibrium toward the monomeric state, and show that the cause of this effect is that these lipids preferentially solvate the defect. Importantly, we show that this shift requires only minimal quantities of short-chain lipids, with no measurable impact on either the macroscopic physical state of the membrane or the protein's biological function. Based on these observations, we posit that free-energy differentials for local lipid solvation define membrane-protein association equilibria. With this, we argue that preferential lipid solvation is a plausible cellular mechanism for lipid regulation of oligomerization processes, as it can occur at low concentrations and does not require global changes in membrane properties.


A cell's outer membrane is made of molecules called lipids, which band together to form a flexible thin film, just two molecules thick. This membrane is dotted with proteins that transport materials in to and out of cells. Most of these membrane proteins join with other proteins to form structures known as oligomers. Except, how membrane-bound proteins assemble into oligomers ­ the physical forces driving these molecules to take shape ­ remains unclear. This is partly because the structural, physical and chemical properties of fat-like lipid membranes are radically different to the cell's watery interior. Consequently, the conditions under which membrane oligomers form are distinct from those surrounding proteins inside cells. Membrane proteins are also more difficult to study and characterize than water-soluble proteins inside the cell, and yet many therapeutic drugs such as antibiotics specifically target membrane proteins. Overall, our understanding of how the unique properties of lipid membranes affect the formation of protein structures embedded within, is lacking and warrants further investigation. Now, Chadda, Bernhardt et al. focused on one membrane protein, known as CLC, which tends to exist in pairs ­ or dimers. To understand why these proteins form dimers (a process called dimerization) Chadda, Bernhardt et al. first used computer simulations, and then validated the findings in experimental tests. These complementary approaches demonstrated that the main reason CLC proteins 'dimerize' lies in their interaction with the lipid membrane, and not the attraction of one protein to its partner. When CLC proteins are on their own, they deform the surrounding membrane and create structural defects that put the membrane under strain. But when two CLC proteins join as a dimer, this membrane strain disappears ­ making dimerization the more stable and energetically favorable option. Chadda, Bernhardt et al. also showed that with the addition of a few certain lipids, specifically smaller lipids, cell membranes become more tolerant of protein-induced structural changes. This might explain how cells could use various lipids to fine-tune the activity of membrane proteins by controlling how oligomers form. However, the theory needs to be examined further. Altogether, this work has provided fundamental insights into the physical forces shaping membrane-bound proteins, relevant to researchers studying cell biology and pharmacology alike.


Assuntos
Antiporters/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Antiporters/química , Antiporters/genética , Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Lipídeos de Membrana/química , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...